3.2.92 \(\int \sin (a+b x) \sin ^3(c+d x) \, dx\) [192]

Optimal. Leaf size=91 \[ -\frac {\sin (a-3 c+(b-3 d) x)}{8 (b-3 d)}+\frac {3 \sin (a-c+(b-d) x)}{8 (b-d)}-\frac {3 \sin (a+c+(b+d) x)}{8 (b+d)}+\frac {\sin (a+3 c+(b+3 d) x)}{8 (b+3 d)} \]

[Out]

-1/8*sin(a-3*c+(b-3*d)*x)/(b-3*d)+3/8*sin(a-c+(b-d)*x)/(b-d)-3/8*sin(a+c+(b+d)*x)/(b+d)+1/8*sin(a+3*c+(b+3*d)*
x)/(b+3*d)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4665, 2717} \begin {gather*} -\frac {\sin (a+x (b-3 d)-3 c)}{8 (b-3 d)}+\frac {3 \sin (a+x (b-d)-c)}{8 (b-d)}-\frac {3 \sin (a+x (b+d)+c)}{8 (b+d)}+\frac {\sin (a+x (b+3 d)+3 c)}{8 (b+3 d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]*Sin[c + d*x]^3,x]

[Out]

-1/8*Sin[a - 3*c + (b - 3*d)*x]/(b - 3*d) + (3*Sin[a - c + (b - d)*x])/(8*(b - d)) - (3*Sin[a + c + (b + d)*x]
)/(8*(b + d)) + Sin[a + 3*c + (b + 3*d)*x]/(8*(b + 3*d))

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 4665

Int[Sin[v_]^(p_.)*Sin[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[Sin[v]^p*Sin[w]^q, x], x] /; ((PolynomialQ[
v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x])) && IGtQ[p, 0] && IGtQ[q
, 0]

Rubi steps

\begin {align*} \int \sin (a+b x) \sin ^3(c+d x) \, dx &=\int \left (-\frac {1}{8} \cos (a-3 c+(b-3 d) x)+\frac {3}{8} \cos (a-c+(b-d) x)-\frac {3}{8} \cos (a+c+(b+d) x)+\frac {1}{8} \cos (a+3 c+(b+3 d) x)\right ) \, dx\\ &=-\left (\frac {1}{8} \int \cos (a-3 c+(b-3 d) x) \, dx\right )+\frac {1}{8} \int \cos (a+3 c+(b+3 d) x) \, dx+\frac {3}{8} \int \cos (a-c+(b-d) x) \, dx-\frac {3}{8} \int \cos (a+c+(b+d) x) \, dx\\ &=-\frac {\sin (a-3 c+(b-3 d) x)}{8 (b-3 d)}+\frac {3 \sin (a-c+(b-d) x)}{8 (b-d)}-\frac {3 \sin (a+c+(b+d) x)}{8 (b+d)}+\frac {\sin (a+3 c+(b+3 d) x)}{8 (b+3 d)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.58, size = 86, normalized size = 0.95 \begin {gather*} \frac {1}{8} \left (-\frac {\sin (a-3 c+b x-3 d x)}{b-3 d}+\frac {3 \sin (a-c+b x-d x)}{b-d}+\frac {\sin (a+3 c+b x+3 d x)}{b+3 d}-\frac {3 \sin (a+c+(b+d) x)}{b+d}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]*Sin[c + d*x]^3,x]

[Out]

(-(Sin[a - 3*c + b*x - 3*d*x]/(b - 3*d)) + (3*Sin[a - c + b*x - d*x])/(b - d) + Sin[a + 3*c + b*x + 3*d*x]/(b
+ 3*d) - (3*Sin[a + c + (b + d)*x])/(b + d))/8

________________________________________________________________________________________

Maple [A]
time = 0.21, size = 84, normalized size = 0.92

method result size
default \(-\frac {\sin \left (a -3 c +\left (b -3 d \right ) x \right )}{8 \left (b -3 d \right )}+\frac {3 \sin \left (a -c +\left (b -d \right ) x \right )}{8 \left (b -d \right )}-\frac {3 \sin \left (a +c +\left (b +d \right ) x \right )}{8 \left (b +d \right )}+\frac {\sin \left (a +3 c +\left (b +3 d \right ) x \right )}{8 b +24 d}\) \(84\)
risch \(-\frac {\sin \left (b x -3 d x +a -3 c \right )}{8 \left (b -3 d \right )}+\frac {3 \sin \left (b x -d x +a -c \right )}{8 \left (b -d \right )}-\frac {3 \sin \left (b x +d x +a +c \right )}{8 \left (b +d \right )}+\frac {\sin \left (b x +3 d x +a +3 c \right )}{8 b +24 d}\) \(85\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)*sin(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

-1/8*sin(a-3*c+(b-3*d)*x)/(b-3*d)+3/8*sin(a-c+(b-d)*x)/(b-d)-3/8*sin(a+c+(b+d)*x)/(b+d)+1/8*sin(a+3*c+(b+3*d)*
x)/(b+3*d)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 916 vs. \(2 (83) = 166\).
time = 0.32, size = 916, normalized size = 10.07 \begin {gather*} -\frac {{\left (b^{3} \sin \left (3 \, c\right ) - 3 \, b^{2} d \sin \left (3 \, c\right ) - b d^{2} \sin \left (3 \, c\right ) + 3 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left ({\left (b + 3 \, d\right )} x + a + 6 \, c\right ) - {\left (b^{3} \sin \left (3 \, c\right ) - 3 \, b^{2} d \sin \left (3 \, c\right ) - b d^{2} \sin \left (3 \, c\right ) + 3 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left ({\left (b + 3 \, d\right )} x + a\right ) - 3 \, {\left (b^{3} \sin \left (3 \, c\right ) - b^{2} d \sin \left (3 \, c\right ) - 9 \, b d^{2} \sin \left (3 \, c\right ) + 9 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left ({\left (b + d\right )} x + a + 4 \, c\right ) + 3 \, {\left (b^{3} \sin \left (3 \, c\right ) - b^{2} d \sin \left (3 \, c\right ) - 9 \, b d^{2} \sin \left (3 \, c\right ) + 9 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left ({\left (b + d\right )} x + a - 2 \, c\right ) - 3 \, {\left (b^{3} \sin \left (3 \, c\right ) + b^{2} d \sin \left (3 \, c\right ) - 9 \, b d^{2} \sin \left (3 \, c\right ) - 9 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left (-{\left (b - d\right )} x - a + 4 \, c\right ) + 3 \, {\left (b^{3} \sin \left (3 \, c\right ) + b^{2} d \sin \left (3 \, c\right ) - 9 \, b d^{2} \sin \left (3 \, c\right ) - 9 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left (-{\left (b - d\right )} x - a - 2 \, c\right ) + {\left (b^{3} \sin \left (3 \, c\right ) + 3 \, b^{2} d \sin \left (3 \, c\right ) - b d^{2} \sin \left (3 \, c\right ) - 3 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left (-{\left (b - 3 \, d\right )} x - a + 6 \, c\right ) - {\left (b^{3} \sin \left (3 \, c\right ) + 3 \, b^{2} d \sin \left (3 \, c\right ) - b d^{2} \sin \left (3 \, c\right ) - 3 \, d^{3} \sin \left (3 \, c\right )\right )} \cos \left (-{\left (b - 3 \, d\right )} x - a\right ) - {\left (b^{3} \cos \left (3 \, c\right ) - 3 \, b^{2} d \cos \left (3 \, c\right ) - b d^{2} \cos \left (3 \, c\right ) + 3 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left ({\left (b + 3 \, d\right )} x + a + 6 \, c\right ) - {\left (b^{3} \cos \left (3 \, c\right ) - 3 \, b^{2} d \cos \left (3 \, c\right ) - b d^{2} \cos \left (3 \, c\right ) + 3 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left ({\left (b + 3 \, d\right )} x + a\right ) + 3 \, {\left (b^{3} \cos \left (3 \, c\right ) - b^{2} d \cos \left (3 \, c\right ) - 9 \, b d^{2} \cos \left (3 \, c\right ) + 9 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left ({\left (b + d\right )} x + a + 4 \, c\right ) + 3 \, {\left (b^{3} \cos \left (3 \, c\right ) - b^{2} d \cos \left (3 \, c\right ) - 9 \, b d^{2} \cos \left (3 \, c\right ) + 9 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left ({\left (b + d\right )} x + a - 2 \, c\right ) + 3 \, {\left (b^{3} \cos \left (3 \, c\right ) + b^{2} d \cos \left (3 \, c\right ) - 9 \, b d^{2} \cos \left (3 \, c\right ) - 9 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left (-{\left (b - d\right )} x - a + 4 \, c\right ) + 3 \, {\left (b^{3} \cos \left (3 \, c\right ) + b^{2} d \cos \left (3 \, c\right ) - 9 \, b d^{2} \cos \left (3 \, c\right ) - 9 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left (-{\left (b - d\right )} x - a - 2 \, c\right ) - {\left (b^{3} \cos \left (3 \, c\right ) + 3 \, b^{2} d \cos \left (3 \, c\right ) - b d^{2} \cos \left (3 \, c\right ) - 3 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left (-{\left (b - 3 \, d\right )} x - a + 6 \, c\right ) - {\left (b^{3} \cos \left (3 \, c\right ) + 3 \, b^{2} d \cos \left (3 \, c\right ) - b d^{2} \cos \left (3 \, c\right ) - 3 \, d^{3} \cos \left (3 \, c\right )\right )} \sin \left (-{\left (b - 3 \, d\right )} x - a\right )}{16 \, {\left (b^{4} \cos \left (3 \, c\right )^{2} + b^{4} \sin \left (3 \, c\right )^{2} + 9 \, {\left (\cos \left (3 \, c\right )^{2} + \sin \left (3 \, c\right )^{2}\right )} d^{4} - 10 \, {\left (b^{2} \cos \left (3 \, c\right )^{2} + b^{2} \sin \left (3 \, c\right )^{2}\right )} d^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/16*((b^3*sin(3*c) - 3*b^2*d*sin(3*c) - b*d^2*sin(3*c) + 3*d^3*sin(3*c))*cos((b + 3*d)*x + a + 6*c) - (b^3*s
in(3*c) - 3*b^2*d*sin(3*c) - b*d^2*sin(3*c) + 3*d^3*sin(3*c))*cos((b + 3*d)*x + a) - 3*(b^3*sin(3*c) - b^2*d*s
in(3*c) - 9*b*d^2*sin(3*c) + 9*d^3*sin(3*c))*cos((b + d)*x + a + 4*c) + 3*(b^3*sin(3*c) - b^2*d*sin(3*c) - 9*b
*d^2*sin(3*c) + 9*d^3*sin(3*c))*cos((b + d)*x + a - 2*c) - 3*(b^3*sin(3*c) + b^2*d*sin(3*c) - 9*b*d^2*sin(3*c)
 - 9*d^3*sin(3*c))*cos(-(b - d)*x - a + 4*c) + 3*(b^3*sin(3*c) + b^2*d*sin(3*c) - 9*b*d^2*sin(3*c) - 9*d^3*sin
(3*c))*cos(-(b - d)*x - a - 2*c) + (b^3*sin(3*c) + 3*b^2*d*sin(3*c) - b*d^2*sin(3*c) - 3*d^3*sin(3*c))*cos(-(b
 - 3*d)*x - a + 6*c) - (b^3*sin(3*c) + 3*b^2*d*sin(3*c) - b*d^2*sin(3*c) - 3*d^3*sin(3*c))*cos(-(b - 3*d)*x -
a) - (b^3*cos(3*c) - 3*b^2*d*cos(3*c) - b*d^2*cos(3*c) + 3*d^3*cos(3*c))*sin((b + 3*d)*x + a + 6*c) - (b^3*cos
(3*c) - 3*b^2*d*cos(3*c) - b*d^2*cos(3*c) + 3*d^3*cos(3*c))*sin((b + 3*d)*x + a) + 3*(b^3*cos(3*c) - b^2*d*cos
(3*c) - 9*b*d^2*cos(3*c) + 9*d^3*cos(3*c))*sin((b + d)*x + a + 4*c) + 3*(b^3*cos(3*c) - b^2*d*cos(3*c) - 9*b*d
^2*cos(3*c) + 9*d^3*cos(3*c))*sin((b + d)*x + a - 2*c) + 3*(b^3*cos(3*c) + b^2*d*cos(3*c) - 9*b*d^2*cos(3*c) -
 9*d^3*cos(3*c))*sin(-(b - d)*x - a + 4*c) + 3*(b^3*cos(3*c) + b^2*d*cos(3*c) - 9*b*d^2*cos(3*c) - 9*d^3*cos(3
*c))*sin(-(b - d)*x - a - 2*c) - (b^3*cos(3*c) + 3*b^2*d*cos(3*c) - b*d^2*cos(3*c) - 3*d^3*cos(3*c))*sin(-(b -
 3*d)*x - a + 6*c) - (b^3*cos(3*c) + 3*b^2*d*cos(3*c) - b*d^2*cos(3*c) - 3*d^3*cos(3*c))*sin(-(b - 3*d)*x - a)
)/(b^4*cos(3*c)^2 + b^4*sin(3*c)^2 + 9*(cos(3*c)^2 + sin(3*c)^2)*d^4 - 10*(b^2*cos(3*c)^2 + b^2*sin(3*c)^2)*d^
2)

________________________________________________________________________________________

Fricas [A]
time = 2.85, size = 122, normalized size = 1.34 \begin {gather*} -\frac {3 \, {\left ({\left (b^{2} d - d^{3}\right )} \cos \left (d x + c\right )^{3} - {\left (b^{2} d - 3 \, d^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (b x + a\right ) - {\left ({\left (b^{3} - b d^{2}\right )} \cos \left (b x + a\right ) \cos \left (d x + c\right )^{2} - {\left (b^{3} - 7 \, b d^{2}\right )} \cos \left (b x + a\right )\right )} \sin \left (d x + c\right )}{b^{4} - 10 \, b^{2} d^{2} + 9 \, d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(d*x+c)^3,x, algorithm="fricas")

[Out]

-(3*((b^2*d - d^3)*cos(d*x + c)^3 - (b^2*d - 3*d^3)*cos(d*x + c))*sin(b*x + a) - ((b^3 - b*d^2)*cos(b*x + a)*c
os(d*x + c)^2 - (b^3 - 7*b*d^2)*cos(b*x + a))*sin(d*x + c))/(b^4 - 10*b^2*d^2 + 9*d^4)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 918 vs. \(2 (76) = 152\).
time = 2.36, size = 918, normalized size = 10.09 \begin {gather*} \begin {cases} x \sin {\left (a \right )} \sin ^{3}{\left (c \right )} & \text {for}\: b = 0 \wedge d = 0 \\\frac {x \sin {\left (a - 3 d x \right )} \sin ^{3}{\left (c + d x \right )}}{8} - \frac {3 x \sin {\left (a - 3 d x \right )} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} - \frac {3 x \sin ^{2}{\left (c + d x \right )} \cos {\left (a - 3 d x \right )} \cos {\left (c + d x \right )}}{8} + \frac {x \cos {\left (a - 3 d x \right )} \cos ^{3}{\left (c + d x \right )}}{8} + \frac {\sin {\left (a - 3 d x \right )} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {\sin {\left (a - 3 d x \right )} \cos ^{3}{\left (c + d x \right )}}{24 d} + \frac {3 \sin ^{3}{\left (c + d x \right )} \cos {\left (a - 3 d x \right )}}{8 d} & \text {for}\: b = - 3 d \\\frac {3 x \sin {\left (a - d x \right )} \sin ^{3}{\left (c + d x \right )}}{8} + \frac {3 x \sin {\left (a - d x \right )} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} - \frac {3 x \sin ^{2}{\left (c + d x \right )} \cos {\left (a - d x \right )} \cos {\left (c + d x \right )}}{8} - \frac {3 x \cos {\left (a - d x \right )} \cos ^{3}{\left (c + d x \right )}}{8} - \frac {3 \sin {\left (a - d x \right )} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} - \frac {3 \sin {\left (a - d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} - \frac {\sin ^{3}{\left (c + d x \right )} \cos {\left (a - d x \right )}}{8 d} & \text {for}\: b = - d \\\frac {3 x \sin {\left (a + d x \right )} \sin ^{3}{\left (c + d x \right )}}{8} + \frac {3 x \sin {\left (a + d x \right )} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} + \frac {3 x \sin ^{2}{\left (c + d x \right )} \cos {\left (a + d x \right )} \cos {\left (c + d x \right )}}{8} + \frac {3 x \cos {\left (a + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8} - \frac {3 \sin {\left (a + d x \right )} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} - \frac {3 \sin {\left (a + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac {\sin ^{3}{\left (c + d x \right )} \cos {\left (a + d x \right )}}{8 d} & \text {for}\: b = d \\\frac {x \sin {\left (a + 3 d x \right )} \sin ^{3}{\left (c + d x \right )}}{8} - \frac {3 x \sin {\left (a + 3 d x \right )} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} + \frac {3 x \sin ^{2}{\left (c + d x \right )} \cos {\left (a + 3 d x \right )} \cos {\left (c + d x \right )}}{8} - \frac {x \cos {\left (a + 3 d x \right )} \cos ^{3}{\left (c + d x \right )}}{8} + \frac {\sin {\left (a + 3 d x \right )} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {\sin {\left (a + 3 d x \right )} \cos ^{3}{\left (c + d x \right )}}{24 d} - \frac {3 \sin ^{3}{\left (c + d x \right )} \cos {\left (a + 3 d x \right )}}{8 d} & \text {for}\: b = 3 d \\- \frac {b^{3} \sin ^{3}{\left (c + d x \right )} \cos {\left (a + b x \right )}}{b^{4} - 10 b^{2} d^{2} + 9 d^{4}} + \frac {3 b^{2} d \sin {\left (a + b x \right )} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{b^{4} - 10 b^{2} d^{2} + 9 d^{4}} + \frac {7 b d^{2} \sin ^{3}{\left (c + d x \right )} \cos {\left (a + b x \right )}}{b^{4} - 10 b^{2} d^{2} + 9 d^{4}} + \frac {6 b d^{2} \sin {\left (c + d x \right )} \cos {\left (a + b x \right )} \cos ^{2}{\left (c + d x \right )}}{b^{4} - 10 b^{2} d^{2} + 9 d^{4}} - \frac {9 d^{3} \sin {\left (a + b x \right )} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{b^{4} - 10 b^{2} d^{2} + 9 d^{4}} - \frac {6 d^{3} \sin {\left (a + b x \right )} \cos ^{3}{\left (c + d x \right )}}{b^{4} - 10 b^{2} d^{2} + 9 d^{4}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(d*x+c)**3,x)

[Out]

Piecewise((x*sin(a)*sin(c)**3, Eq(b, 0) & Eq(d, 0)), (x*sin(a - 3*d*x)*sin(c + d*x)**3/8 - 3*x*sin(a - 3*d*x)*
sin(c + d*x)*cos(c + d*x)**2/8 - 3*x*sin(c + d*x)**2*cos(a - 3*d*x)*cos(c + d*x)/8 + x*cos(a - 3*d*x)*cos(c +
d*x)**3/8 + sin(a - 3*d*x)*sin(c + d*x)**2*cos(c + d*x)/(4*d) + sin(a - 3*d*x)*cos(c + d*x)**3/(24*d) + 3*sin(
c + d*x)**3*cos(a - 3*d*x)/(8*d), Eq(b, -3*d)), (3*x*sin(a - d*x)*sin(c + d*x)**3/8 + 3*x*sin(a - d*x)*sin(c +
 d*x)*cos(c + d*x)**2/8 - 3*x*sin(c + d*x)**2*cos(a - d*x)*cos(c + d*x)/8 - 3*x*cos(a - d*x)*cos(c + d*x)**3/8
 - 3*sin(a - d*x)*sin(c + d*x)**2*cos(c + d*x)/(4*d) - 3*sin(a - d*x)*cos(c + d*x)**3/(8*d) - sin(c + d*x)**3*
cos(a - d*x)/(8*d), Eq(b, -d)), (3*x*sin(a + d*x)*sin(c + d*x)**3/8 + 3*x*sin(a + d*x)*sin(c + d*x)*cos(c + d*
x)**2/8 + 3*x*sin(c + d*x)**2*cos(a + d*x)*cos(c + d*x)/8 + 3*x*cos(a + d*x)*cos(c + d*x)**3/8 - 3*sin(a + d*x
)*sin(c + d*x)**2*cos(c + d*x)/(4*d) - 3*sin(a + d*x)*cos(c + d*x)**3/(8*d) + sin(c + d*x)**3*cos(a + d*x)/(8*
d), Eq(b, d)), (x*sin(a + 3*d*x)*sin(c + d*x)**3/8 - 3*x*sin(a + 3*d*x)*sin(c + d*x)*cos(c + d*x)**2/8 + 3*x*s
in(c + d*x)**2*cos(a + 3*d*x)*cos(c + d*x)/8 - x*cos(a + 3*d*x)*cos(c + d*x)**3/8 + sin(a + 3*d*x)*sin(c + d*x
)**2*cos(c + d*x)/(4*d) + sin(a + 3*d*x)*cos(c + d*x)**3/(24*d) - 3*sin(c + d*x)**3*cos(a + 3*d*x)/(8*d), Eq(b
, 3*d)), (-b**3*sin(c + d*x)**3*cos(a + b*x)/(b**4 - 10*b**2*d**2 + 9*d**4) + 3*b**2*d*sin(a + b*x)*sin(c + d*
x)**2*cos(c + d*x)/(b**4 - 10*b**2*d**2 + 9*d**4) + 7*b*d**2*sin(c + d*x)**3*cos(a + b*x)/(b**4 - 10*b**2*d**2
 + 9*d**4) + 6*b*d**2*sin(c + d*x)*cos(a + b*x)*cos(c + d*x)**2/(b**4 - 10*b**2*d**2 + 9*d**4) - 9*d**3*sin(a
+ b*x)*sin(c + d*x)**2*cos(c + d*x)/(b**4 - 10*b**2*d**2 + 9*d**4) - 6*d**3*sin(a + b*x)*cos(c + d*x)**3/(b**4
 - 10*b**2*d**2 + 9*d**4), True))

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 84, normalized size = 0.92 \begin {gather*} \frac {\sin \left (b x + 3 \, d x + a + 3 \, c\right )}{8 \, {\left (b + 3 \, d\right )}} - \frac {3 \, \sin \left (b x + d x + a + c\right )}{8 \, {\left (b + d\right )}} + \frac {3 \, \sin \left (b x - d x + a - c\right )}{8 \, {\left (b - d\right )}} - \frac {\sin \left (b x - 3 \, d x + a - 3 \, c\right )}{8 \, {\left (b - 3 \, d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)*sin(d*x+c)^3,x, algorithm="giac")

[Out]

1/8*sin(b*x + 3*d*x + a + 3*c)/(b + 3*d) - 3/8*sin(b*x + d*x + a + c)/(b + d) + 3/8*sin(b*x - d*x + a - c)/(b
- d) - 1/8*sin(b*x - 3*d*x + a - 3*c)/(b - 3*d)

________________________________________________________________________________________

Mupad [B]
time = 1.57, size = 311, normalized size = 3.42 \begin {gather*} -{\mathrm {e}}^{a\,1{}\mathrm {i}-c\,3{}\mathrm {i}+b\,x\,1{}\mathrm {i}-d\,x\,3{}\mathrm {i}}\,\left (\frac {b+3\,d}{b^2\,16{}\mathrm {i}-d^2\,144{}\mathrm {i}}+\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,\left (b-3\,d\right )}{b^2\,16{}\mathrm {i}-d^2\,144{}\mathrm {i}}\right )+{\mathrm {e}}^{a\,1{}\mathrm {i}+c\,3{}\mathrm {i}+b\,x\,1{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\left (\frac {b-3\,d}{b^2\,16{}\mathrm {i}-d^2\,144{}\mathrm {i}}+\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,\left (b+3\,d\right )}{b^2\,16{}\mathrm {i}-d^2\,144{}\mathrm {i}}\right )+{\mathrm {e}}^{a\,1{}\mathrm {i}-c\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}\,\left (\frac {3\,b+3\,d}{b^2\,16{}\mathrm {i}-d^2\,16{}\mathrm {i}}+\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,\left (3\,b-3\,d\right )}{b^2\,16{}\mathrm {i}-d^2\,16{}\mathrm {i}}\right )-{\mathrm {e}}^{a\,1{}\mathrm {i}+c\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\left (\frac {3\,b-3\,d}{b^2\,16{}\mathrm {i}-d^2\,16{}\mathrm {i}}+\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,\left (3\,b+3\,d\right )}{b^2\,16{}\mathrm {i}-d^2\,16{}\mathrm {i}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*x)*sin(c + d*x)^3,x)

[Out]

exp(a*1i + c*3i + b*x*1i + d*x*3i)*((b - 3*d)/(b^2*16i - d^2*144i) + (exp(- a*2i - b*x*2i)*(b + 3*d))/(b^2*16i
 - d^2*144i)) - exp(a*1i - c*3i + b*x*1i - d*x*3i)*((b + 3*d)/(b^2*16i - d^2*144i) + (exp(- a*2i - b*x*2i)*(b
- 3*d))/(b^2*16i - d^2*144i)) + exp(a*1i - c*1i + b*x*1i - d*x*1i)*((3*b + 3*d)/(b^2*16i - d^2*16i) + (exp(- a
*2i - b*x*2i)*(3*b - 3*d))/(b^2*16i - d^2*16i)) - exp(a*1i + c*1i + b*x*1i + d*x*1i)*((3*b - 3*d)/(b^2*16i - d
^2*16i) + (exp(- a*2i - b*x*2i)*(3*b + 3*d))/(b^2*16i - d^2*16i))

________________________________________________________________________________________